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SUMMARY

Pavlovian conditioning underlies many aspects of
pain behavior, including fear and threat detection
[1], escape and avoidance learning [2], and endoge-
nous analgesia [3]. Although a central role for the
amygdala is well established [4], both human and an-
imal studies implicate other brain regions in learning,
notably ventral striatum and cerebellum [5]. It re-
mains unclear whether these regions make different
contributions to a single aversive learning process
or represent independent learning mechanisms that
interact to generate the expression of pain-related
behavior. We designed a human parallel aversive
conditioning paradigm in which different Pavlovian
visual cues probabilistically predicted thermal pain
primarily to either the left or right arm and studied
the acquisition of conditioned Pavlovian responses
using combined physiological recordings and fMRI.
Using computational modeling based on reinforce-
ment learning theory, we found that conditioning
involves two distinct types of learning process.
First, a non-specific ‘‘preparatory’’ system learns
aversive facial expressions and autonomic re-
sponses such as skin conductance. The associated
learning signals—the learned associability and pre-
diction error—were correlated with fMRI brain
responses in amygdala-striatal regions, correspond-
ing to the classic aversive (fear) learning circuit. Sec-
ond, a specific lateralized system learns ‘‘consum-
matory’’ limb-withdrawal responses, detectable
with electromyography of the arm to which pain is
predicted. Its related learned associability was
correlated with responses in ipsilateral cerebellar
cortex, suggesting a novel computational role for
the cerebellum in pain. In conclusion, our results
show that the overall phenotype of conditioned
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pain behavior depends on two dissociable reinforce-
ment learning circuits.

RESULTS

The brain is acutely tuned to detecting a variety of threats, espe-

cially pain, and elicits a set of appropriate responses as soon as

potential harm is detected. This classic ‘‘fear’’ response is critical

for survival, and the way in which clues in the environment are

used to predict harm (Pavlovian conditioning) represents one

of the most important and evolutionary conserved learning sys-

tems in animals. However, it is not clear whether the overall

phenotype of the pain-based fear response represents a single

process or the sum of partially independent processes.

We acquired fMRI and simultaneous physiological responses

in 15 healthy human subjects in a Pavlovian first-order delay con-

ditioning experiment (Figure 1; Experimental Procedures). Visual

cues differentially predicted frequent lateralized pain to either left

or right armor infrequent pain. A relatively short CS-US interval of

1 s was used to optimize detection of reflex-like conditioned

muscle activities, similar to the design of eye-blink conditioning

studies [6]. Ultra-brief painful heat stimuli at 55�C were used as

unconditioned stimuli, delivered through two contact heat-

evoked potential stimulators.
Physiological Responses
We recorded a number of different physiological responses to

evaluate the acquisition of conditioned responses. Skin conduc-

tance responses (SCRs) did not distinguish the laterality of pre-

dicted or received pain, consistent with a preparatory response.

Specifically, SCRs showed comparable conditioning to cues

that predicted left (CS+ L) or right (CS+ R) arm pain, in compar-

ison to control (CS�) (Figure 2A; data represented as mean ±

SEM). SCRs to the pain itself were also comparable regardless

of whether the pain was delivered to the predicted (congruent)

or unpredicted (incongruent) side (Figure 2B). We could not iden-

tify any significant laterality differences in early or late learning

periods during each session, from either normalized SCRmagni-

tude or rise time to peak (Figures S3C and S3D).
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Figure 1. Experimental Design

(A) Each trial involved one of three Pavlovian CS cues, each of which primarily

predicted (70%) either left pain (blue symbol), right pain (red), or no pain (green)

and infrequently predicted the other outcomes (15%).

(B) On each trial, a 1-s CS cue was followed immediately by pain or no pain

(US) in a delay conditioning procedure, followed by a variable 7- to 9-s inter-

trial interval (ITI).
Facial electromyography (EMG) also followed a preparatory

pattern. The EMG was recorded from the corrugator muscle, a

characteristic muscle of aversive expression, during a behavioral

version of the task (Figure S1). The response during the 1-s CS-

US interval averaged across trials showed a significant increase

in 500- to 1,000-ms time window for both CS+ L and CS+ R trials

compared to CS� trials (combined CS+ L/R versus CS� paired

t test p < 0.05 in 500–1,000 ms), but not significant between

CS+ L and R groups (p > 0.1 for all sample points; Figure 2C).

Comparing pain-evoked responses for congruent and incon-

gruent prediction trials during 1-s duration after painful US deliv-

ery revealed no statistically significant differences, consistent

with a preparatory response (both p > 0.5; Figure 2D).

In contrast, EMGresponses fromeacharm (recorded frombra-

chioradialis and biceps-brachii, which are involved in upper limb

withdrawal)showedlateralized‘‘consummatory’’patterns.Were-

corded activity in the 1-s CS-US interval and compared it to pre-

CS baseline activity. We found that responses were significantly

greater in the arm in which pain was predicted (ipsilateral) as

opposed to the contralateral side (Figures 2E and 2F). Note that,

because of the proximity of the stimulating thermode and the

EMG electrodes, US responses (to look for congruency effects)

are unavoidably too corrupted by electrical artifact for analysis.

Imaging Results
Reinforcement learning theory proposes that acquisition of

conditioned responses from trial-by-trial experience utilizes
C

two keymeasures: a prediction error term that records the differ-

ence between pain expectations and outcomes [5] and an

‘‘associability’’ term that keeps track of the uncertainty of predic-

tions [7, 8]. These two measures are then integrated to update

CS values that provide the prediction for the next trial. Accord-

ingly, the larger the prediction error, the greater the update in

CS value. The associability term acts as the learning rate of

value, with higher associability representing greater uncertainty

and hence more rapid learning.

SCRs were of sufficient fidelity to permit trial-by-trial analysis

using a computational statistical model fitting procedure. In

agreement with previous reports [7, 8], we found it best

described by a preparatory associability term, illustrated in

Figure 2G.

We then used the estimated model parameters in a linear

regression with brain responses recorded by concurrent fMRI

to identify whether anatomically distinct learning signals related

to preparatory and left/right consummatory learning signals

could be dissociated. We used the computational parametric re-

gressors for all learning signals (associability and prediction error

for both preparatory and consummatory temporal difference

models) in a single regression model. These values were gener-

ated using population free parameters with the best fitting

model, the hybrid model, obtained from the behavioral data

(SCRs) fitting procedure mentioned earlier.

We found that bilateral ventral putamen and amygdala corre-

lated with a preparatory temporal prediction error and associ-

ability signal, respectively (Figures 3A and 3B). In contrast, left

and right consummatory associabilities correlated with ipsilat-

eral cerebellar responses. Associability signal clusters were

located symmetrically in lobule left V extending into left VI and

spanning the border between lobules right V and right VI (Fig-

ure 3C). The peak coordinates of these cerebellar activations

were in gray matter, as identified by the automated anatomical

labeling (AAL) and spatially unbiased infratentorial template

(SUIT) atlases. In addition, post hoc analyses of functional re-

gions of interest (ROIs) support the hypothesized roles of struc-

tures identified by computational models. Beta estimates were

extracted for each subject from the functional clusters of interest

as they appear in given contrasts. They were averaged across

subjects according to model or trial types without parametric

modulation, where amygdala, putamen, and cerebellum showed

differential responses to preparatory and consummatory model

outputs (Figures S3G and S3H).

DISCUSSION

In summary, our results dissociate two distinct response-

learning systems underlying human pain. An amygdala-striatal

system learns preparatory responses, including autonomic re-

sponses and facial expression, and largely ignores information

about the laterality of pain. In contrast, a cerebellar system learns

specific consummatory limb withdrawal responses appropriate

to the anatomical site of predicted pain.

The role of the amygdala in preparatory conditioning is well es-

tablished. For instance, amygdalar lesions impair autonomic re-

sponses, freezing, potentiated startle, and active avoidance

[1, 2]. Our data show that a preparatory associability signal

drives activity at the level of the fMRI BOLD, consistent with
urrent Biology 26, 52–58, January 11, 2016 ª2016 The Authors 53
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Figure 3. Statistical Parametric Maps

(A) Preparatory prediction error in bilateral ventral putamen (p < 0.001 unc.).

(B) Preparatory associabilities in bilateral amygdala (p < 0.01 unc.).

(C) Ipsilateral activations to consummatory associabilities (p < 0.001 unc.; all

p < 0.05 in small volume correction [SVC] using anatomically defined 8-mm-

diameter spherical ROI masks built around hypothesized structure co-

ordinates; see Table S1). ROI analysis of cerebellum using SUIT probabilistic

atlas template shows (top) left anterior cerebellum activations in the border

between lobule V and VI (SUIT space coordinates: [24, �52, �15]) and in

lobule VIII ([�22, �50, �41]; p < 0.004 unc.) and (bottom) right anterior cere-

bellum activation in the border between lobule V and VI ([�18, �52, �13];

p < 0.001 unc.).

unc., uncorrected threshold.
previous studies in both humans and rodents [7–10]. It is impor-

tant to note, however, that aversive prediction errors have been

identified at a neuronal level in rodents [11, 12]. Although there

exist species and methodological differences in comparison to

our study, it illustrates the differences in methodology between

BOLD responses and neuronal physiological recordings. In

particular, because the BOLD signal could be conveying the

average signal of a potentially computationally heterogeneous

group of neurons, some caution is needed against over-interpre-

tation of the results. On the other hand, it is still unclear how

some computational quantities might be encoded by distributed

activity of a population of neurons.
Figure 2. Behavioral Results

(A) CS-evoked SCRs in ‘‘unreinforced’’ trials show significant differences between

CS+ L and CS+ R (T(41) = 0.14; p = 0.89).

(B) SCRs for reinforced pain trials with congruent/incongruent predictions, separ

(C) Facial EMG traces during 1-s CS-US interval showCS+ L/R > CS� in amplitud

difference between CS+ L/R (all time points p > 0.1).

(D) Average facial EMGconditioned response (CR) incidence shows no significant

pain delivery, between congruent/incongruent trials (both p > 0.5).

(E) Time course of upper-limb EMGduring 1-s CS-US interval averaged across L/R

(F) Average upper-limb EMG CR incidence in brachioradialis and biceps-brachii

(G) Trial-by-trial model fit of associability (blue) and value (red) to group-normaliz

Data are represented as mean ± SEM. *p < 0.05; **p < 0.01; n.s., not significant.

C

Results from other studies also argue against any simplistic

single model of amygdala function. For example, amygdala re-

sponses have been shown contralateral to the shock laterality

in unilateral eye-blink conditioning [13] and to exhibit non-sym-

metrical activations in a range of fear paradigms [14], in contrast

to the results here, which lacked laterality dissociation. Other

factors such as motivational state [15] and sensitivity to inferred

(‘‘model-based’’) cue-outcome contingency [16] have also been

demonstrated. Therefore, whereas our computational model-

based analysis showed that the expression of preparatory re-

sponses appears to be outcome blind, we certainly cannot

exclude the possibility that neuronal processing within the amyg-

dala may incorporate information about outcome identity,

including laterality.

The involvement of the putamen in aversive conditioning was

discovered much later than amygdala, and its function has

been less clear. Because the putamen receives cortical somato-

topic pain projections [17], it is possible that it might have carried

a consummatory or sensory-specific error signal [18, 19]. How-

ever, the non-lateralized nature of the signal seen here instead

provides good evidence to suggest that it is primarily part of a

preparatory system.

Most significantly, the results provide a formal account of one

of the roles of the cerebellum in pain. Previous research,

including using human fMRI, has showed cerebellum responses

to noxious stimuli; however, defining a specific role in pain pro-

cessing has been difficult [20]. Stimulation of the cerebellum

can alter nociceptive thresholds and reflexes in animals [21],

suggesting it may engage in pain modulation along with various

brainstem structures involved in the cerebrocerebellar loop

[20, 22]. Evidence from human studies indicates cerebellum

may be activated by other processes related to, but not exclu-

sive to, pain sensory processing, for example, motor withdrawal

[23], anticipation to pain [24], and negative emotions [25]. This

has led to the proposal that the cerebellum may act as an inte-

grator of various effector systems of pain such as sensorimotor

integration, pain modulation, and affective processing [20].

Our results provide evidence of an uncertainty-sensitive asso-

ciative learning process for ipsilateral conditioned motor re-

sponses. Anatomically, the major activation was localized in

the anterior lobe, bordering lobule V and VI, which concurs

with the sensorimotor area of previous functional topographic

studies [26]. Conditioned postural limb activation during electri-

cal shock conditioning is known to depend on an intact anterior

and superior cerebellum [27]. Electrical shocks, however, also

recruit ascending proprioceptive fibers that project to cere-

bellum and support motor learning. Here, our use of thermal
CS+ L/R and CS� (TL(41) = 2.78; TR(41) = 2.99; both p < 0.01), but not between

ated into L/R pain groups, showing no significant differences.

e (combined CS+ L/R versus CS� p < 0.05 in 500–1,000 ms), but not significant

difference betweenCS+ L/R during 1-s CS-US interval before or during 1 s after

, with ipsilateral > contralateral response amplitude (p < 0.05 in 850–1,000ms).

muscles, significantly greater for ipsilateral trials (both p < 0.05).

ed SCRs (black) of non-reinforced trials in one session (first ten trials).
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pain stimulation—which should selectively activate a-delta and

c-fibers afferents—provides evidence of a primary nociceptive-

driven learning process.

This result suggests parallels with eye-blink conditioning, a

prototypical consummatory response. Anatomically, both ani-

mal and human lesion experiments have identified an associa-

tion between lobule V and VI with impairment or disruption of

eye-blink conditioning [28, 29]. Computationally, cerebellar

climbing fiber activity has been shown to represent prediction er-

ror magnitude [30], from which associability might be calculated.

Previous eye-blink studies have suggested a distinction between

preparatory and consummatory learning processes. Although

both excitatory and inhibitory conditioning on one eye can trans-

fer to the other [31], cues predicting unilateral air puff do not

block acquisition of contralateral blink responses, but they do

block autonomic responses [32]. This suggests preparatory

and consummatory learning systems are distinct but interact.

Together, our data show that the expression of learned pain

behavior is the sum of multiple, distinct neural processes. This

has important implications for howwe evaluate pain and its treat-

ment, especially in animals where motor responses such as paw

withdrawal and tail flick are the predominant outcome measures

by which pain is inferred. Our data show that different emitted

responses may correspond to different underlying neural sub-

systems of pain, which may help explain difficulties in translating

animal-to-human results.

EXPERIMENTAL PROCEDURES

Subjects and Experimental Design

Fifteen healthy human subjects participated in a Pavlovian first-order delay

conditioning experiment (Figure 1; Supplemental Experimental Procedures).

All subjects gave informed consent prior to participation, and the study was

approved by the Ethics and Safety Committee of the National Institute of Infor-

mation and Communications Technology, Japan. Subjects learned condi-

tioned associations between different visual cues (abstract colored images

presented on a computer screen) and brief painful heat stimuli delivered either

to the left forearm, the right forearm, or not at all. Ultra-brief painful heat stimuli

at 55�C were delivered through two contact heat-evoked potential stimulators

(CHEPS; Medoc Pathway) to the subject’s left or right inner forearm.

Physiological Measurement and Analysis

Physiological signals were continuously recorded using MRI-compatible

BrainAmp ExG MR System with specialized electrodes and sensors (Brain

Products; see Figure S1). Off-line processing and analysis were implemented

in MATLAB7 (The MathWorks).

SCRs were assessed as the peak-to-peak amplitude difference in a time

window of 0.5–4.5 s after cue onset (pain-omitted trials) and 0.5–5.5 s (pain tri-

als). RawSCRmagnitudeswere square root transformed for normalization and

scaled to individual subject’s mean-square-root-transformed US response

[7, 33]. Upper-limb EMG recordings were taken from the brachioradialis and

biceps-brachii muscles on both arms. MRI artifacts were removed by using

a custom-made filtering program [34]. The resultant EMG signals were

band-pass filtered at 10–150 Hz, full wave rectified, and baseline adjusted.

The signals from 1-s CS-US interval were sectioned out and sorted according

to trial types for further analysis. Moreover, conditioned EMG response (CR)

was defined as where ISI EMG activity reached 30% of the EMG maximum

of that trial, staying above that with a minimum duration of 200 ms and a min-

imum integral of 1 mV/ms [29]. The percentage of EMG CR incidence was

averaged across left and right. Facial EMG (corrugator muscle) and heart

rate were collected in behavioral study only (see Supplemental Experimental

Procedures). Due to hardware constraint, SCRs were recorded on left side

only, as there is no definitive evidence of laterality difference between electro-

dermal activity recorded on left or right hand [35].
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Computational Model Analysis

We constructed reinforcement learning models, fitted trial-by-trial model

value/associability to SCR data for parameter estimation and model compar-

ison, and then used obtained learning signals to probe brain activity [7, 8, 33].

In this way, the brain responses are specifically related to the behaviorally

fitted learning model. These models can be used to test competing hypothe-

ses about the neural representation of preparatory (i.e., laterality non-specific)

and consummatory (i.e., laterality specific) learning processes.

Standard Temporal Difference Model

This model is the simple ‘‘real-time’’ instantiation of the Rescorla-Wagner (RW)

model [36]. The value V of trial n + 1 for a given cue j is updated based on the

value of current trial n and the prediction error, difference between current

value Vj, and outcome stimulus value R at trial n, weighted by a constant

learning rate a:

Vjðn+1Þ=VjðnÞ+a,ðRðnÞ � VjðnÞÞ;
where the learning rate a (0 % a % 1) is a free parameter.

Hybrid Temporal Difference Model

The hybrid model combines both RW and Pearce-Hall (PH) models, where the

RW rule is used for error-driven value update and PH associability is used as a

dynamic learning rate for RW to modulate predictive learning [7]. The value of

associability decreases if the conditioned stimuli become correctly predictive

of the stimuli outcome [37]. The values of hybrid model were updated as

follows:

Vjðn+ 1Þ=VjðnÞ+ k,ajðnÞ,ðRðnÞ � VjðnÞÞ

ajðn+1Þ= h,
�
�RðnÞ � VjðnÞ

�
� + ð1� hÞ,ajðnÞ;

where free parameters a0 (initial associability; 0 % a0 % 1), k(0 % k % 1), and

h(0 % h % 1) are determined by fitting to behavioral data.

Assuming the preparatory learning system cannot distinguish lateralized

outcomes, then R(n) = 1 for all pain trials regardless of laterality. Whereas

the consummatory learning system tracked outcomes ipsilateral to its

side only, ignoring the opposite side, then for the left system, R(n) = 1 for left

pain or R(n) = 0 for both right pain and no pain and vice versa for the right

system.

For individual session, the free parameters were optimized by maximizing

likelihood for individual subject’s sequence of SCRs, modeled as the normal

distribution around a mean determined by the scaled predicted value (or asso-

ciability or the sum of both), computed by the model on that trial, plus a con-

stant error term with a distribution variance [7]. To avoid contamination by pain

over CS-predictive responses, only SCRs of no pain (i.e., unreinforced) trials

were fitted, but all trials were used in the computation of value and associabil-

ity. We obtained population free parameters using a hierarchical-model-fitting

approach for subsequent imaging analysis [38]. Bayesian information criterion

(BIC) value was calculated for each model with optimal individual parameters

to quantitatively compare goodness of fit (Table S2).

fMRI Data Analysis

fMRI imaging data were acquired on a 3T Siemens Magnetom Trio scanner

with Siemens standard 12-channel phased array head coil. Functional images

were collected using a single-shot gradient echo EPI sequence (repetition time

[TR] = 2,500 ms; echo time [TE] = 30 ms; field of view = 240 mm; flip angle =

80�). Thirty-seven contiguous oblique-axial slices (3.75-mm voxels) parallel

to the AC-PC line were acquired. Whole-brain high-resolution T1-weighted

structural images were obtained. Preprocessing of imaging data were con-

ducted using SPM8 following standard procedures (Wellcome Trust Center

for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm/).

We conducted a parametric analysis, in which the computational model

generated learning signal regressors parametrically modulated stick functions

at the time of CS (visual cue) and US (pain outcome) presentation for each trial

[39]. The best-fitting hybrid model from the SCR-based analysis was used to

generate the following regressors with population free parameters: at outcome

time: (1) preparatory associability ageneral; (2) left-sided consummatory associ-

ability aleft; and (3) right-sided associability aright; at cue and outcome time

(i.e., ‘‘full’’ prediction error as a biphasic response): (4) preparatory prediction

error VDgeneral; (5) left-sided predicted error series VDleft; and (6) right-sided

prediction error series VDright; regressors of no interest: (7) and (8) left/right

http://www.fil.ion.ucl.ac.uk/spm/


pain delivery and (9) motion parameters (36) from affine realignment in

preprocessing.

All these regressors were compiled into one single GLM for first-level anal-

ysis for individual subject in SPM8. Resulting contrasts were used in second-

level one-sample t tests to make population inference (Figure 3). Small

volume correction (SVC) for multiple comparison was conducted within

anatomically defined 8-mm-diameter spherical masks built around hypothe-

sized structure coordinates of the amygdala, ventral putamen, and cerebellum

(Table S1).

Functional ROI analysis of the cerebellum was conducted using SUIT atlas

[40]. Masks of the cerebellum were created using T1-weighted structural

scans for each subject, spatially normalized to the SUIT template. Resultant

contrasts from first-level analyses were then resliced into SUIT atlas space us-

ing previously generated SUIT normalization parameters. Spatial smoothing of

the functional data was omitted in order to avoid contaminating activation from

the visual cortex. The SUIT probabilistic MRI atlas of human cerebellum was

used to locate cerebellar lobules [41]. In addition, post hoc analyses of all

ROIs were conducted by extracting beta estimates for each subject from the

functional clusters of interest as they appear in given contrasts usingMarsBaR

toolbox (http://marsbar.sourceforge.net/). They were then averaged across

subjects according to model or trial types without parametric modulation (Fig-

ures S3G and S3H).
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